Goodness of Fit Tests (Year 2) (From OCR 4768)

Q1, (Jun 2006, Q1)

1	f(x) =	-0.01 200	$24x^2 + 12x$,	$0 \le x \le 1$			
0	$E(X) = \int_0^1 x f(x) dx$ $= 12 \left[\frac{x^5}{5} - 2 \frac{x^4}{4} + \frac{x^3}{3} \right]_0^1$						Integral for E(X) including limits (which may appear later). Successfully integrated.
		$=12\left[\frac{1}{5}\right]$	$-\frac{2}{4}+\frac{1}{3}\bigg]=12\times$	$\frac{1}{30} = \frac{2}{5}$		A1	Correct use of limits leading to final answer. C.a.o.
	For m	node,	f'(x) = 0			M1	
	f'(x) :	= 12(3 <i>x</i>	$(x^2 - 4x + 1) = 12$	(3x-1)(x-1)		A1	
			$x = 1$ and $x = \frac{1}{2}$		e conservator		
	33,000		cing argumer is the mode.	nt (e.g. f*(x)) t	hat 🚦	A1	
)	Cdf F(x) = $\int_0^x f(t) dt$ = $12 \left(\frac{x^4}{4} - 2 \frac{x^3}{3} + \frac{x^2}{2} \right)$ = $3x^4 - 8x^3 + 6x^2$			M1	Definition of cdf, including limits (or use of "+c" and attempt to evaluate it), possibly implied later. Some valid method must be seen.		
$\mathbf{F}\left(\frac{1}{4}\right) = \frac{3}{256} - \frac{8}{64} + \frac{6}{16} = \frac{3 - 32 + 96}{256} = \frac{67}{256}$, core a	B1	Or equivalent expression; condone absence of domain [0,1]. For all three; answers given;	
	(1753		$\frac{6}{4} = \frac{3 - 16 + 24}{16} = \frac{1}{16}$ $\frac{16 \times 27}{64} + \frac{6 \times 9}{16} = \frac{243}{256}$				must show convincing working (such as common denominator)! Use of decimals is not acceptable.
	Oi	12 6	209	131	46	B2	For e _i .
	e,	13 4	352 - 134 = 218	486 – 352 = 134	26		B1 if any 2 correct, provided Σ = 512.
					M1 A1 M1	Must be some clear evidence of reference to χ_3^2 , probably implicit by reference to a critical point (5%: 7·815; 1%: 11·34). No ft (to the A marks) if incorrect χ^2 used,	
	Very highly significant. Very strong evidence that the model does not fit.					A1 A1	but E marks are still available. There must be at least one reference to "very", i.e. the extremeness of the test statistic.
				we observe ma	any	la Maria 2	Or e.g. "big/small" contributions
	ex	pected	bservations a			E1	to X ² gets E1, and directions of discrepancies gets E1.

Q2, (Jan 2007, Q4a)

Obs Exp 10 6-68	M1	Combine first two rows.	
$X^{2} = \frac{(10 - 6 \cdot 68)^{2}}{6 \cdot 68} + \text{etc}$ $= 1.6501 + 1.7740 + 3.3203 + 4.5018 +$	M1		
0.4015 + 0.8135 = $12.46(12)$	A1		
d.o.f. = $6 - 3 = 3$ Refer to χ_3^2 .	M1	Require d.o.f. = No. cells used – 3. No ft from here if wrong.	
Upper 5% point is 7⋅815 12⋅46 > 7⋅815 ∴ Result is significant. Seems the Normal model does not fit the data at the 5% level.	A1 E1 E1	No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.	
 E.g. The biggest discrepancy is in the class 1.01 < a ≤ 1.02 	E1		
 The model overestimates in classes, but underestimates in classes 	E1	Any two suitable comments.	9

Q3, (Jun 2007, Q4i)

Obs	21	24	12	15	13	9	6
Exp	26.53	17-22	20.25	11-00	10.94	8.74	5.32
3		X2	Ma.	M1 A1		ilities × 10 pected freq	0. uencies corre
$X^2 = \frac{(2}{}$	$\frac{1 - 26 \cdot 53)^2}{26 \cdot 53}$	- etc		M1			
	+ 2·6695 + 3 77+ 0·0869	·3611 + 1·4	545 + 0.38	79 A1	At leas	t 4 values	correct.
9-1203				A1			
.o.f. = 7	- 1 = 6						
Refer to 2	2 ·			M1	No ft fi	rom here if	wrong.
Jpper 5%	point is 12-	59		A1	No ft fi	rom here if	wrong.
	12.59 : Re		significant.	E1	ft only	c's test sta	tistic.
evidence: 5% lev	suggests the /el.	model fits	the data at	the E1	ft only	c's test sta	tistic.

9

Q4, (Jan 2008, Q4a)

Q4, (J	an 2008, Q4a)					
(a) (i)	$\bar{x} = \frac{1125}{500} = 2.25$ For binomial E(X) = $n \times p$ $\therefore \hat{p} = \frac{2.25}{5} = 0.45$	B1 M1	distr	of mean of ibution. May are: answe	y be implicit.	3
(ii)	70 10 10 10 00			910	(C 42	
	f _o 32 110 154	125	is.	63	16	
	f _e (calc) 25.164 102.944 168.455	137	.827	56.384	9.226	
	f _e (tables) 25.15 102.95 168.45	137	.85	56.35	9.25	
	χ^2 = 1.8571 + 0.4836 + 1.2404 + 1.1938 + 0.7763 + 4.9737 = 10.52(49) Refer to χ_4^2 . Upper 5% point is 9.488.	M1 A1 M1 A1	Calc frequ All c Or u 1.86 1.19 c.a.c Allow wron table if wron	sulation of equencies. correct. sing tables: 57 + 0.4828 78 + 0.7848 b. Or using the correct of the larger groupes, and FT. Correct of the larger groupes.	xpected 8 + 1.2396 + 8 + 4.9257 tables: 10.49(64) (= cells – 2) from d or ungrouped Otherwise, no FT	
	Significant.	A1	50000	ly c's test s		
	Suggests binomial model does not fit.	A1	ft on	ly c's test s	tatistic.	
	The model appears to overestimate in the middle and to underestimate at the tails.	E1		ept also any ment e.g. a	other sensible	
	The biggest discrepancy is at $X = 5$.	E1	signi	ificance, the	e result would significant.	
	A binomial model assumes all trials are independent with a constant probability of "success". It seems unlikely that there will be independence within families and/or that p will be the same for all families.	E2	whic		ensible comment s independence	12

Q5, (Jun 2008, Q4a)

(a) (i)	$\bar{x} = \frac{310}{100} = 3.1$	B1	
	$s^2 = \frac{1288 - 100 \times 3.1^2}{99} = \frac{327}{99} = 3.303$ Evidence could support Poisson since the variance is fairly close to the mean.	B1 E1	3
(ii)			

f_o	6	16	19	18	17	14	6	4	0
f_e	4.50	13.97	21.65	22.37	17.33	10.75	5.55	2.46	1.42

2500.0	10.47			,	9.45
			M1	Calculat	tion of expected
			A1	frequen	cies.
			A1	Last cel	I correct.
				All other	rs correct, but ft if wrong.
			M1	above, to	ing cells. (Condone if not ed as fully as shown but require top two cells ed as a minimum.)
	.6747 + 0.3244 + 0. 826 + 0.0345	8537 + 0.0063	+ M1	Calculat	tion of X^2 .
	.876(2)		A1	Depend	ne wrong last cell.) is on both of the ng M marks.
Refer to	χ^2 .		M1	Allow co	orrect df (= cells - 2) from
	per 10% point is 7.7	79.		50/000 Street St	grouped or ungrouped nd FT. Otherwise, no FT if
Not sig	nificant.		A1		's test statistic.
	sts Poisson model d	oes fit	A1		's test statistic.
	ny reasonable level		A1		r sensible comment.

10

Q6, (Jan 2010, Q1)

	With $p = \frac{1}{2}$		95. 95	ļ.	l	10		
	Probability	0.125	0.375	0.375		0.125		
	Exp'd frequency	10	30	30		10		
	Obs'd frequency	7	23	29		21		
	$\lambda^{\ell} = 0.9 + 1.6333 + 14.666(7)$	0.0333 + 12	.1	M1 A1 M1 A1	A	robs \times 80 for expected frequencied ll correct. Calculation of X^{ℓ} . .a.o.	s.	
	Refer to χ_3^2 .			M1	W C	Allow correct df (= cells – 1) from wrongly grouped table and ft. Otherwise, no ft if wrong. $P(X^2 > 14.667) = 0.00212$.		
	Upper 5% point is 7.8	815		A1		No ft from here if wrong.		
	Significant.			A1		t only c's test statistic.		
340-13-1-	Suggests it is reasona = ½ does not appl		se model with <i>p</i>	100000000000000000000000000000000000000		t only c's test statistic.	ı	[10]
(ii)	$\bar{x} = \frac{144}{80} = 1.8$ $\therefore \hat{p} = \frac{1.8}{3} = 0.6$			B1 B1	ι	C.a.o. Use of $E(X) = np$. It c's mean, provided $0 < \hat{p} < 1$.		[2]
(iii)	Refer to χ_2^2 .	****		M1		Allow df 1 less than in part (i). No t if wrong.		
	Upper 5% point is 5.9	991.		A1	N	No ft if wrong.		
	Suggests it is reasona estimated p does appl	The second secon	se model with	A1	1000	t provided previous A mark warded.		[3]
(iv)	For example: Estimating <i>p</i> leads to at the expense of t freedom. The model in (i) fails underestimate for <i>X</i> =	the loss of 1 of due to a large	degree of	E2	1.00	Reward any two sensible points fo E1 each.	r	[2]
	underestimate for A =	= 3.				Tot	al	

Q7, (Jun 2014, Q3b)

H ₀ : The Poisson model	fits the data
------------------------------------	---------------

H₁: The Poisson model does not fit the data

r	P(X = r)	Expected value	Combined
0	0.03688	2.213	9.516
1	0.12171	7.303	
2	0.20083	12.050	
3	0.22091	13.255	
4	0.18225	10.935	
5	0.12029	7.217	
6	0.06616	3.969	7.027
≥7	0.05097	3.058	

$$X^{2} = \frac{2.516^{2}}{9.516} + \frac{2.050^{2}}{12.050} + \frac{3.745^{2}}{13.255} + \frac{3.065^{2}}{10.935} + \frac{0.217^{2}}{7.217} + \frac{2.027^{2}}{7.027}$$

= 0.6652+0.3488+1.0581+0.8591+0.0065+0.5847

= 3.522 awrt 3.52

Refer to χ_4^2

Upper 5% point is 9.49

3.522 < 9.49 cannot reject H₀

Poisson model appears to fit data.

В1	Both hypotheses. Must be the right way round.
ы	Do not accept "data fits model" or equivalent.

M1 At least 3 probabilities to 3dp or better or 3 expected values to 3sf or better

M1 Multiply by 60 to obtain expected values

Al All correct to 3sf or better

M1 Merge first 2 and last 2 cells

M1* Calculation of X^2

Al cao

M1 Allow correct df from wrongly grouped table.

B1 No FT from here if wrong.

Aldep FT candidates 3.522 if relevant M1 earned.

Aldep FT candidates 3.522 if relevant M1 earned.

Do not accept "data fits Poisson model" or equivalent.

[11]

Q8, (Jan 2011, Q3)

(i)	Using mid- intervals 1.5, 1.7, etc $\bar{x} = \frac{205}{100} = 2.05$	M1		
	100	A1	Mean.	
	$s = \sqrt{\frac{425.16 - 100 \times 2.05^2}{99}} = 0.2227(01)$	E1	s.d. Answer given; must show convincingly.	3
(ii)	$f = 100 \times P(1.8 \le M < 2.0)$	M1	Probability × 100.	+
	$= 100 \times P(-1.1226 \le z < -0.2245)$ = 100 \times ((1 - 0.5888) - (1 - 0.8691))	A1	Correct Normal probabilities. ft c's	
	$=100\times(0.4112-0.1309)=28.03$	A1	mean. Must show convincingly using Normal distribution. ft c's mean.	3
(iii)	H ₀ : The Normal model fits the data. H ₁ : The Normal model does not fit the data.	B1 B1	Ignore any reference to parameters.	-
	247	M1	Merge first 2 and last 2 cells.	
	$X^{2} = 0.7294 + 0.1384 + 1.9623 + 3.5155 + 0.2437$	M1	Calculation of X^{ℓ} .	
	= 6.589(3)	A1	c.a.o.	
	Refer to χ_2^2 .	M1	Allow correct df (= cells – 3) from wrongly grouped table and ft. Otherwise, no ft if wrong. $P(X^2 > 6.589) = 0.0371$.	
	Upper 5% point is 5.991.	A1	No ft from here if wrong.	
	Significant.	A1	ft only c's test statistic.	.55
	Evidence suggests that the model does not fit the data.	A1	ft only c's test statistic. Conclusion in context.	9
(iv)	The model	1	-	+
	overestimates in the 2.2 – 2.4 class,	E1		
	 underestimates in the 2 – 2.2 class. At lower significance levels the test would not have been significant. 	E1 E1		3
_	7755	\vdash		18

Q9, (Jun 2013, Q3)

(i)		G1 G1	Curve, through the origin and in the first quadrant only. A single maximum; curve returns to $y = 0$; nothing to the right of $x = 5$.
	2 4 6	GI	No t.pt at $x = 0$; t.pt. at $x = 5$; $(5, 0)$ labelled (p.i. by an indicated scale).
		[3]	
(ii)	$F(x) = k \int_0^x t(t-5)^2 dt$	M1	Correct integral for $F(x)$ with limits (which may appear later).
	$= k \left[\frac{t^4}{4} - \frac{10t^3}{3} + \frac{25t^2}{2} \right]_0^x$	M1	Correctly integrated.
	$= k \left(\frac{x^4}{4} - \frac{10x^3}{3} + \frac{25x^2}{2} \right)$	A1	Limits used correctly to obtain expression. Condone absence of " -0 ". Do not require complete definition of $F(x)$. Dependent on both M1's
		[3]	
(iii)	F(5) = 1 $\therefore k \left(\frac{5^4}{4} - \frac{10 \times 5^3}{3} + \frac{25 \times 5^2}{2} \right) = 1$	M1	Substitute $x = 5$ and equate to 1.
	$\therefore k \left(\frac{1875 - 5000 + 3750}{12} \right) = 1$		Expect to see evidence of at least this line of working (oe) for A1.
	$\therefore k \times \frac{625}{12} = 1$ $\therefore k = \frac{12}{625}$	Al	Convincingly shown. Beware printed answer.
	F 0 4 4 F 16 60 F(1)	[2]	TI CON TO SELECTION OF THE SELECTION OF
(iv)	For $0 \le x < 1$, Expected $f = 60 \times F(1)$ = $60 \times \frac{12}{625} \left(\frac{1^4}{4} - \frac{10 \times 1^3}{3} + \frac{25 \times 1^2}{2} \right) = 10.848$	M1 A1	Use of $60 \times F(x)$ with correct k. Allow also 31.488 – frequency for $1 \le x < 2$ provided that one found using $F(x)$. Allow either frequency found by integration.
	For $1 \le x < 2$, Expected $f = 60 - \Sigma$ (the rest) = 20.64	Bl	FT 31.488 – previous answer. Or allow $60 \times (F(2) - F(1))$
	= 20.04	[3]	Of allow $60 \times (\Gamma(2) - \Gamma(1))$

(v)	H ₀ : The model is suitable / fits the data.	B1	Both hypotheses. Must be the right way round.
	H ₁ : The model is not suitable / does not fit the data.		Do not accept "data fit model" oe.
	Merge last 2 cells: Obs $f = 17$, Exp $f = 10.752$	MI	
	$X^2 = 3.1525 + 1.5411 + 1.5460 + 3.6307$	M1	Calculation of X^2 .
	= 9.870	Al	c.a.o.
	Refer to χ_3^2 .	M1	Allow correct df (= cells - 1) from wrongly grouped table and ft. Otherwise, no ft if wrong.
	Upper 2.5% point is 9.348.	A1	No ft from here if wrong. $P(X^2 > 9.870) = 0.0197$.
	Significant.	A1	ft only c's test statistic.
	Sufficient evidence to suggest that the model is not suitable in this context.	A1	ft only c's test statistic. Conclusion in context. Do not accept "data do not fit model" oe.
		[8]	